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Hamiltonian structure for singular isomonodromy 
deformation equations 

Hartmann Romer and Tillmann Schroder 
Fakultat fur Physik der Universitat Freiburg, Hermann-Herder-Strasse 3, D-7800 Freiburg, 
West Germany 

Received 21 June 1984 

Abstract. A Hamiltonian structure is constructed explicitly for a class of isomonodromy 
deformation equations for ordinary differential equations with one irregular singularity. 
The Hamiltonian turns out to be closely related to a differential form, which is known to 
be naturally associated to isomonodromy deformation equations. The monodromy data 
are constants of motion. The functional independence of the formal monodromy exponent 
and Stokes matrices is demonstrated by an example. 

1. Introduction 

A vast amount of work has been done in the last couple of years on systems of nonlinear 
differential equations which arise from isospectral deformations of linear operators. 
Many physically interesting Hamiltonian systems have been shown to be obtainable 
from isospectral deformations. As a consequence, they possess a large number of 
conserved quantities (like spectra and scattering data) which may even be large enough 
to prove their complete integrability. 

The monodromy group of a linear differential equation is the group which is 
generated by those linear transformations which correspond to analytic continuation 
of a given fundamental system of solutions along closed paths with fixed initial and 
end point. It may be non-trivial, if the coefficients of the differential equations are 
singular at some points (possibly including infinity). Deformations of the coefficients 
are called isomonodromic if they do not change the monodromy group. They have 
been known in the mathematical literature for many decades and lead to complicated 
nonlinear equations for the coefficients, which, however, can be solved, once one is 
able to solve the subsidiary linear Riemann-Hilbert problem of finding a fundamental 
system with prescribed monodromy behaviour. 

This isomonodromy method is potentially even stronger than isospectral deforma- 
tions. Its power transpires most impressibly in the monumental work of Sato, Miwa, 
Jimbo, Ueno and collaborators, summarised in Jimbo et af (1979, 1981), Jimbo and 
Miwa (1981a, b), where, for instance, correlation functions of many field theoretical 
models are evaluated. By now, the literature on isomonodromy problems (IMPS) is 
very extensive. 

The main problem we should like to deal with in this paper concerns the Hamil- 
tonian formulation of isomonodromy equations. Also, the inverse question of associat- 
ing isomonodromy problems to Hamiltonian systems may be of interest. To be more 
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1062 H Romer and T Schroder 

precise, we discuss the deformation problem for a 2 x 2 matrix linear differential 
equation 

a Y/a5 = ~ ( 5 )  Y (1.1) 

under the hypothesis that the coefficients A(5) have only one singularity, which is 
assumed to be of irregular type and situated at 5 = m .  The parameters we are going 
to vary are the exponents T-, of a formal solution of ( l . l ) ,  which are assumed to be 
linear functions of a parameter x. The monodromy data which are to be kept fixed 
include the so-called Stokes matrices S,, which connect the analytic continuation of a 
fundamental solution with a certain asymptotic expansion in a sector 9, with centre 
at f = 03 to a fundamental solution with the same asymptotic expansion in the neigh- 
bouring sector 9,+l. 

Quite generally, and also in our case, the isomonodromy condition is a compatibility 
condition between (1.1) and another linear equation 

(a Y/ax) dx = R(x) Y (1.2) 

where x is the deformation parameter, and R is a 1-form whose construction in 
terms of the coefficient A of (1.1) is described e.g. in Jimbo er al (1981). The 
compatibility condition between ( 1.1 ) and ( 1.2) is 

(dA/ax) dx  - an/ag - [R, A] = 0. (1.3) 

The formulation as a compatibility condition exhibits an important analogy between 
isomonodromic and isospectral deformations. 

Our strategy will be the following. We start out from equation (1.3) rather than 
(1 .1 )  and assume R:  = fi dx to be of the special form 

where 

and D is a constant traceless diagonal matrix 

D=(" 0 -a 0). 

Equation ( 1.3) then assumes the form 

dA/ ax - [ U + Dl, A] = - D. (1 .7 )  

The corresponding linear homogeneous equation 

a A/ ax - [ U + 0 5 ,  A] = 0 ( 1  3) 

has been treated in considerable detail by Dickey (1981). Considered as an equation 
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for A it is shown to have formal solutions 

identically in u I ( x )  and u z ( x ) ,  where the coefficients Ak are in the differential algebra 
generated by U ,  and U*. The requirement that the series for A breaks off after the mth 
term gives a pair of nonlinear differential equations for u I ,  u2, whose solutions yield 
a family of finite series solutions A("') of (1.8). Dickey gives Hamiltonian structures 
for the differential equations which arise from these break-off conditions. 

We were able to relate finite series solutions of (1.8) and (1.7) and  to find a 
Lagrangian, a symplectic form and a Hamiltonian for the break-off equations corre- 
sponding to (1.7). 

This means that we have cast the isomonodromy deformation equations for (1.1 ) 
with R in the form given above into explicit Hamiltonian form, once we have shown 
that (1.7) is really the deformation equation for ( I .  1) if A is taken as the solution of 
(1.7) with the prescribed R. This amounts to showing that the steps leading to the 
isomonodromy conditions can be reversed. 

We shall present two proofs that this can really be achieved. Then, in particular, 
it can be deduced that the monodromy data are integrals of motion of the Hamiltonian 
system, which is equivalent to the deformation problem. 

Moreover, we demonstrate that a certain function w, defined in Jimbo et a1 (1981), 
which can be naturally associated to isomonodromy problems, coincides also for our 
isomonodromy problem with a multiple of the Hamiltonian. 

The Stokes matrices are bound to be integrals of motion, but one might suspect 
that they are just trivial constants. In order to exclude this dull possibility, we explicitly 
evaluate the Stokes matrices for the case m = 1. Normally, the calculation of the Stokes 
matrices for a given differential equation is a difficult task, and  no general procedure 
for obtaining them is known. In this special case one relates the equation to a case 
treated by Sibuya in his monograph (1975a). We find that the Stokes matrices are, 
indeed, not trivial but rather depend on uI  and u2 in a perhaps surprisingly complicated 
way. Their conservation can be explicitly checked. 

The material of this paper is organised in the following way. Section 2.1 contains 
a precise description of the problem and a more detailed outline of our strategy. The 
construction of the isomonodromy problem is described in § §  2.2 and 2.3. First in 
§ 2.2 the relation to Dickey's isospectral equation ( 1.8) is explained and, for complete- 
ness, Dickey's results are stated as far as they are relevant for us. Then in § 2.3 the 
method performing the transition to our inhomogeneous equation (1 .7 )  is explained 
and the Lagrangian, the symplectic form and  the Hamiltonian for the isomonodromy 
problem are constructed. 

In § 3 the isomonodromic deformation is interpreted in terms of the Hamiltonian 
structure developed in § 2 .  After some preliminary technical work in 9 3.1, in $ 8  3.2 
and 3.3 we show how to conclude from ( 1.7) and (1.2) that (1.7) is really the isomono- 
dromy equation for the linear systems (1 .1)  with the coefficients determined from the 
Hamiltonian system. Further we show explicitly how the invariance of the monodromy 
data emerges from the deformation equation. Section 3.4 relates the Hamiltonian of 
our system to the function w of Jimbo et a1 (1981). In § 3.5 equations, symplectic 
form, Lagrangian and  Hamiltonian are explicitly written down in an  illustrative 
example. Sections 4.1-4.3 contain the calculation of the Stokes matrices for m = 1, 
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which are demonstrated to be conserved and non-trivial. The main results, definitions 
and notation for the isomonodromy problem with a strong singularity at 5 = 03 are 
collected in an appendix. 

2. Construction of an isomonodromy problem from an appropriate Hamiltonian 
structure 

2.1. The deformation equation as an integrability condition 

We want to associate an isomonodromy problem to a Hamiltonian system, such that 
the Hamiltonian equations of motion become the deformation equations of the IMP 

and the monodromy data are conserved quantities of the Hamiltonian system. The 
Hamiltonian function will turn out to be related to the 1-form w of the IMP. 

To be more precise, we choose 

as the deformation parameter of the singular I M P  of the differential equation 

a y/ai  = ~ ( 3 )  Y (2.2) 

with a single strong singularity at 5 = 00. 

In order to construct the Hamiltonian system, we start out from the fact that both 
the deformation equations of (2.2) and certain integrable Hamiltonian systems arise 
as integrability conditions of systems of linear partial differential equations. 

The isomonodromy deformation equations of the 2 x 2 matrix differential equation 

a Y/a l=  4 5 )  r, (2.3) 

with A ( 5 )  rational in 5, are of the general form 

dA = a Q / a i  + [Q, A] (2.4) 

where d denotes the exterior derivative with respect to the deformation parameters 
and Q is a certain 1-form in parameter space, whose construction from the coefficient 
A can be found in the appendix. 

As mentioned above, in our case we have only one deformation parameter, T-,, 
given by (2.1). Hence d = dx a/ax. So we have to find a Hamiltonian system with 
equation of motion 

aA/ax = a@ag + [a, A] (2.5) 
with f2 = dx. 

A from an appropriately given matrix Q. 
The idea is to invert the procedure which constructs f2 from A and to determine 

The equation 

(aA/ax) dx-aQ/ag=[n ,  A] (2.6) 
is the integrability condition of the system 
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We want x to be the time coordinate and 5 to enter only as a parameter in a simple 
way. This suggests the ansatz 

Cl = A =  -( U + l D )  d x  (2.9) 

with 

Then equation (2.6) becomes 

a A / a x + [  U +  5 0 ,  A ]  = -D. 

(2.10) 

(2.1 1 )  

Equation (2.7) now looks like an eigenvalue problem with eigenvalue 5 and a potential 
given by the functions U ,  and U * .  To find the second equation (2.8) one has to solve 
equation (2.11) for A. 

2.2. Hamiltonian structure of the homogeneous equation ( a / a x ) A , + [  U + 5 0 ,  A,] = 0 

To this end we first consider the homogeneous equation 

( a / a x ) A o + [ U + { D ,  A,]=O. (2.12) 

This equation, even for n x n matrices, has been treated by Dickey (1981); in order to 
make our presentation reasonably self-sustained and to fix our notations we recollect 
his results as far as they are relevant for us. 

Dickey starts with the isospectral deformation equation 

R'+[U+(D,  R ] = 0 ,  = a / a x ,  (2.13) 

with U and D as in equation (2.10), looking for solutions which are formal series 
3c1 

R =  Rk5-k (2.14) 

with coefficients in the differential algebra generated by uI  and u2. R is decomposed 
into 

R = b , R ( " +  b2R'2' (2.15) 

k = O  

where R'" and R'*' are special solutions of (2.13) with 

R'"' 

Here 

and 

Rb"=(,  1 0  o),  R ? = ( O  0 0  1)  

a = 1,2) is representable as 

( R ( Q j ) , ,  = cp'"+"J. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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are formal solutions of the equations 

In the expansions 

(2.201 

(2.21) 

the coefficients can be determined recursively, and the coefficients of R are finally 
obtained from @k and gk. 

The quantity 

(2.22) 

which is just given by the first ( m  + I )  terms of the series of l"'R fulfils 

l P ) ' + [ U + l D ,  i ( m ) ] =  -[D, Rm+J (2.23) 

iff R solves equation (2.13). 
The differential algebra formal series solutions of (2.13) and (2.23) solve the 

equations identically in the functions U ,  and u2. Demanding now in addition that the 
series solution of (2.13) terminates after ( m  + 1 )  terms leads to the equivalent conditions 

k " ) ' + [ U + l D ,  i ( m ) ] = O  (2.24) 

(2.25) 

which are differential equations for the functions u I  and u2. 

completely integrable Hamiltonian system. 
It is for these equations that Dickey was able to construct a Lagrangian and a 

A Lagrangian is given by 

(2.26) 

and accordingly 

SL"'/SU = 0 (2.27) 

with 

(2.28) 

is equivalent to equation (2.26) or (2.27). 
The symplectic form da'" and the Hamiltonian are then obtained from the relations 

(2.29) 

(2.30) 
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(2.31) 

(2.32) 

The symbol l m + ,  means taking the coefficient of 5-"'-'. 
are conserved 

quantities, even identically in 5. Equivalently, Tr(fT'"'')k or the coefficients Jkl of the 
characteristic polynomial 

From equation (2.24) it is evident that all the eigenvalues of 

2 2 m ( 2 - 1 )  

det(l?""'-wl)= c J ( ~ ) w ' =  1 J k l L k ~ '  
I = O  1=0 k = O  

(2.33) 

are conserved. The existence of m independent conserved quantities in involution is 
shown and, moreover, Dickey succeeds in constructing action and angle variables in 
algebraic terms on a Riemannian surface of genus m. 

For us the crucial result is that a Hamiltonian structure for the homogeneous 
equation (2.12) is found and that the polynomial 

A 0 -  - f T ( m )  (2.34) 

in 5 is a solution of (2.12). 

2.3. Hamiltonian structure of the inhomogeneous equation ( d / a x ) A  + [ U + 5 0 ,  A]  = - D 

We now come back to the inhomogeneous equation. We try to solve the equation 

dA/dx  + [ U + 5 0 ,  A ]  = - D  (2.35) 

supplemented by a suitable subsidiary condition by adapting Dickey's procedure for 
the equation 

dAO/dx +[ U + 5 0 ,  A , ] =  - [ D ,  Rm+I] 0 (2.36) 

to this case. 
T o  this end we rewrite equation (2.13) in the form 

R' + [ U, RI = -[ 5 0 ,  RI. (2.37) 

The recursion relations for the coefficients Rk of the formal expansion are then to be 
modified in that step which relates R,+I  to R,, because we want to make contact wit! 
the inhomogeneous equation. The modified recursion relations for the coefficients Rk 
of a formal power series solution of the inhomogeneous equation are then 

(2.38) 
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The initial condition we choose is 

(2.39) 

The fir:t m steps of the recursion are evidently unchanged by :he modification and 
yield Rj = R, for 0 s  j m - 1. To find the difference between Rj and Rj in the next 
step, we split into diagonal and off-diagonal parts, denoting the diagonal part of a 
matrix M by MD and calling M - MD = MOD. First of all the off-diagonal part of 
equation ( m  - 1 ) yields 

( k m  ) O D  = ( Rm )OD. (2.40) 

Then from equation ( m ) :  
(i)  Diagonal part 

( kL ) ,+D+[U,  k m ] D = O .  (2.41) 

NOW, because of U = UoD 

[U,  kn11=[U, (km)OD1=[U, ( R ~ ) o D I = [ U ,  R m l D *  (2.42) 

We already know R,, which fulfils 

( R D + U, RmID = 0. 

Thus, we get 
A 

( Rm)D = ( R,)D - DX - C. 

Hence, remembering (2.40), 

(2.43) 

(2.44) 

A 

R,  = R, - DX - C. (2.45) 

For the integration constant C we set 

C = ( C  0 -c  0) (2.46) 

(2.47) 

(2.48) 

(2.49) 
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Thus, we have 

( R m + l ) O D  = (&+I )OD-  (x i  c /  a )  

The quantity 

(2.50) 

(2.51) 

now evidently fulfils 

R""+ D+[  U +  5 0 ,  R ( m j ] =  -[D, Rm+J (2.52) 

This means that we have constructed a family of matrices - 
A = d("') (2.53) 

which solve equation (2.35) under the subsidiary condition [D, ffmil]  = 0. 

inhomogeneous case. 
Next, we take over the construction of the Hamiltonian structure to the 

Dickey's Lagrangian L'"') = Tr DRm+* yields 

( a L ' " / s u ) O D  = ( m  + l)('Rm+I)OD, (2.54) 

where ' M  means the transposed matrix. 
Defining 

L + = - ( m + l ) ( x + c / a ) u , u , = ( m + l ) ( x + c / a ) d e t  U 

L + /  
we obtain 

- ( m +  l ) ( x + c / a ) u ,  

) 
=(  - ( m +  l ) ( x + c / a ) u ,  

= - ( m + 1 ) (x  + c /  a)' U. 

6L+ (AOD = ( 6 L + / 6 u 2  

Thus putting 

(2.55) 

(2.56) 

i("" = L'"') + L,  = Tr( DRm+2) - ( m + 1 )( x + c /  a )  u I  u2 (2.57) 

we see that 6$""/6U = O  is equivalent to [D, f f m + l ] = O .  The symplectic form d&'" 
is again determined from 

(2.58) 

The difference Lcm)- L'm) does not contain derivatives of u I  or u2 and hence does not 
contribute to the symplectic form. As a consequence, (d/dx)&("') = (d/dx)a'", and 
the symple2tic form is the same as for the homo4eneous case. 

Given L'"'), the corresponding Hamiltonian H("') can be constructed from 

(2.59) 

We obtain 
-( m + 1 )[Tr( DRm+2 + U&+ I )  - (x + c/ a )  u I  U*]. (2.60) I j ( m )  = 

It differs from Dickey's Hamiltonian by the term ( m +  l ) (x+c /a )u lu2 .  
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3. Isomonodromic deformation interpreted in terms of the Hamiltonian structure 

We define 
A("') A("'( u ( x ) ,  x;  5) = i'"') 

and are going to investigate the IMP connected with 

( d / d g )  Y = A'"'(5) .Y. 

We expect the deformation equation of (3.1) to be 

(a/dx)A'"'+ D+[  U +  5 0 ,  A'"'] = O  (3.3) 

and in 0 3.2 this will actually be proved. Equation (3.3) is equivalent to [D, I?"+,] = 0 
and therefore it may be interpreted as the Euler-Lagrange equation of a Hamiltonian 
system. Furthermore, the exponent of local monodromy, To, and the 1-form w 
defined in the appendix can be identified with quantities of the Hamiltonian system. 

3.1. Calculation of T'"' 

Following the notation of the appendix we state the following proposition. 

Proposition 1. For all m E N: 
( i )  

The proof of proposition 1 is essentially based on the following three lemmas. A direct 
consequence of the definition of 9 by @ ( @ P ( l )  = 1 is lemma 1. 

Lemma 1. For all n E N  

where (i, j )  E {( 1, l ) ,  (1,2),  (2, I ) ,  (2,2)}. It is readily seen that for all i E N 
@ t  = (@!)OD, 9 ; ' = 9 ; 2 .  (3 .7)  

Herewith, and by taking advantage of lemma 1, we easily prove lemma 2. 

Lemma 2. For all n E N  

(i g = l  RgCDpg) D =o. (3.8) 
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Lemma 3. For all n E N 

(3.9) 
21 

The proof of proposition 1 is now carried out by first calculating T % - l ,  T'_",' and 
F\"' and then concluding by induction from TII",", . . . , T$), F\"', . . . , F',-,+, to 
TII",":,. . . , T?$l, F(lm), . , . , F',m$+2 for g = m, . . . ,3 .  Finally T?:), F',"' and Ti"' are 
computed. 

m )  

3.2. The deformatiori equations as Hamilton's canonical equations of motion 

In the introduction of Yj 3 we promised to prove that (d/dx)A'"+ D +[ U + 4'0, A'"'] = 0 
is actually the deformation equation of (3.2). According to the appendix we have to 
*show that the 1-form fi'") = 6'"') dx is identical to h = - ( U +  5 0 )  dx. 

We have found two ways to prove Si. = h. First, we apply the procedure given by 
(A14), (A15) to construct the deformation equation. From proposition 1, d'T'" = 
-D< dx ; furthermore [ D, F:"] = - U. Thus 6'"'' turns out to depend only apparently 
on m :  

(3.10) fi'"'(5) =fi(5) = -( U + ( 0 )  d x = 6 ( 5 ) .  

In Yj 3.3 we shall show that from 

(d/d() Yj"' = A'") Y:") 

(d/'dx)A'"'= ( d / d c ) f i + [ f i ,  A'"'] 
and 

we can conclude 

(d/dX) Y;"' = fi Y;").  

(3.1 1 )  

(3.12) 

(3.13) 

In proposition 5, the invariance of the Stokes matrices will be deduced explicitly from 
(3.13). 

The second proof of fi = 8 is likewise based 0;(3.13). Comparing ( d / d x )  Y ,  = AY, 
with the deformation equation (A14) we get (fi - n) Y:") = 0. Since Y:") is invertible, 
this is equivalent to 

Si.=& (3.14) 

3.3. Conclusions from the deformation equation, invariance of the monodromy data 

For a 2 x 2  matrix M let 

IMI= sup IIM*xll, XI,  X 2 E  @, (3.15) 
l/.xll = I 

(3.16) 

(3.17) 

Proposition 2. Let Y be a fundamental solution of (a/ay) Y = A ( l ) Y ,  A(5) a 2 x 
2-matrix-valued polynomial in 5. Following the notation of the appendix, let Y (  6)  - 
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?({) e'(<) for l+o3 in a sector Y with centre at 5 = W .  If R solves ( a / a x ) A =  
(a/al)n + [R, A ]  and for every E > 0 there exists a lo such that for every r~ Y with 

I ( a / a x )  Y - yliS=p E . le ' ( T ' l ,  (3.18) 
I4 3 I l o l  

then 

(3.19) a 
- Y - R Y = O  
ax  

for all 5. 

ProoJ By assumption 

(3.20) 

is transformed to 

( a / a x )  Y = ~2 Y + Y{  Y - ' [ ( a / a x )  Y -a y]},,=,,. (3.21) 

Decomposing Y ( [ ) - '  = e-T'c 'T(l)- i  and applying (3.16), (3.17) we obtain 

( ( a / a x ) Y - n Y I s  I Y I ( I F - ~ I .  le-'I. &.le'l) = IYI(IF- 'I .  E ) I { = ~  

for every [E Y with 14 2 Ilol. 

that IF([)-'l remains finite as f +co .  Thus ( a / a z ) Y ( l )  = K l ( l ) Y ( l )  pointwise in 5. 

(3.22) 

From the asymptotic expansion F(l)-' - ?(l)-' for 5- t  a3 in Y it can be deduced 

The next proposition is necessary for the proof of proposition 4, but it is especially 
interesting in itself. 

Proposition 3. If (a /ax )A'")+  D +[ U + 5 0 ,  A"'] = 0, then 

( d / d X )  Tb"' = ( a / a X ) (  R,+I)D = 0. (3.23) 

Prooj (a/dx)A'"'+ D +[ U + (0, A'"'] = 0 is equivalent to 

[D,  = 0, i.e. = 0. 

So from 
R&+I = [ U ,  Rm+~l=- [D ,Rm+, l  

we get 

= ( &+ I ) D  + [ U? ( R m +  I ) O D ]  

= ( R k + i ) D + [ U ,  (dm+l)OD+(X+C/a)  U ]  

= ( R A +  I ) D = TA" ''. (3.24) 

Now, the solutions Y:" defined in the appendix fulfil the assumptions of proposition 
2 .  

Proposition 4. If (a /ax )A'")+  D + [  U +  lD, A'"'] = 0, then for every E > 0 there exists 
a lo such that for all m E N ,  all j E Z and for every ZE Yjm)  with 14 2 l lo l ,  

(3.25) I(a/ax) Y: m ,  - A Y: = f  s E .  lexp[ T ( ~ ) ( ~ ) ] I .  
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Pro05 Let j and m be fixed. 

Y:"(C) - P'ml(l) e x p [ ~ ' " ( l ) ]  

for l+ CO in Yjm), where the series ?(mi is in general divergent. To avoid the problem 
which may be caused by this divergence, consider the quantity 

y ' m ' ~ ( l )  := ( l-.> exp[ T ( m ) ( l ) ] .  (3.26) 
I 

k = O  

We write 

and try to bound the norm of each of the three terms on the right-hand side by f ~ '  leTcm)l. 
( i )  By calculating the first terms of Ycm), '  and by ( R k + l ) D  =0,  I(a/ax) Y c m ' 3 1 -  

fi Y c m i 3 ' l l s = ~ f o r  all (E 9;"" with I f 1  > /(,I is estimated by \ E .  1 exp[ T'"')(f)]I for a suitably 
chosen f l .  

(ii) By making use of the asymptotic expansions of Yjm) and (a/ax) Yjm) ,  one can 
find l2 and l3 with It3/> 1121> 15,l such that the remaining two terms can be bounded 
in the same way. Taking lo:= c3, the assertion is proved. 

As a conclusion of the last three propositions, we have the following proposition. 

Proposition 5. If 

(d /dx)A'"' '  = (a /ag) i r  +[A, A'"''] 

then 

(a/ax)s:"  = 0. 

Proof 

3.4. Equivalence of CO'"'' and fi '"')  
The 1-form 

(3.28) 

(3.29) 

(notice the different meaning of indices 
theory of isomonodromic deformations. 

and '"'I) is a fundamental element of the 
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Jimbo er a1 (1979) notice that in the case where the set of deformation data is 
restricted to { a l , .  . . , an, T'_""'}, the deformation equations can be derived as canonical 
equations of motion from a Hamiltonian which is closely related to the 1-form w 
of this special case. However, they do not develop the complete symplectic framework. 

Furthermore they remark that w is an important link between IMPS and other-at 
first sight unrelated-topics of mathematical physics. For example, there is a close 
connection between the n-point correlation function of the two-dimensional Ising 
model and the 1-form w of a certain I M P .  

Now, we want to show that for our I M P  ( p  = C O ) ,  G'"') is identical to the Hamiltonian 
fi"" up to a constant factor. From (A17) 

(3.30) 

The coefficient of 5-I  in ?"'(a?."'/d<) d'T'" is easily calculated to be (Fi"'+ 
D\"')D dx. Since Tr{(F\")+ D\"')D dx} =Tr{D\"'D dx} we obtain 

W'"( U(x),  x )  = -Tr D\"D. (3.31) 

To identify 6'"' and fi""" we have to show the following. 

Proposition 6. 

Tr D$"D = Tr { DRm+* + UR,,,} - (x  + c / a ) u l  u2. (3.32) 

The proof is somewhat technical and may be omitted. It is essentially based on Lemmas 
2 and 3 and the calculation of D\"' and FLm2, following the procedure of (A7). 

(3.33) 

3.5. Example m = 2 

In order to illustrate our results obtained so far, let us discuss an example. Let m = 2 

- I  

A'2'(<) = - 1 A-,{-'-' .  (3.34) 
J = - 3  

Then our general procedure yields 

Thus we obtain the I M P  associated to 
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The deformation equations are (d/aX)A(2)+ D +[ U + 5 0 ,  A‘”] = -[D, i,] = 0, i.e. 

R i 2 =  (b/4a3)(u; - 2 ~ : ~ z )  - ( x +  C / U ) U ~  = O ,  

I?:’= ( b / 4 a 3 ) ( u ; - 2 u l u : ) - ( x + c / a ) u 2 = 0 .  
(3.37) 

In the case of b/4a3 = 1, c = 0, u1 = u2 = q, we obtain 

q“ = 2q3 + qx, (3.38) 

the PainlevC I1 equation q”=  2q3 + qx + v with v = 0. One calculates 

Using equation (3.37) one easily checks that To = ( b/4a3)( u;u2 - u1 U;)(; -:) is indepen- 
dent of x. Further from (3.36), (3.37) and propositions 2-4 we conclude 

(3.40) 

Employing (3.37) once more, the Lagrangian and the Hamiltonian are calculated as 
(compare equations (2.57) and (2.60)) 

i(’) = (b /4a3)(  ulu; - u:u:) - 5(x + c/a)uIu2,  

fi”’ = -3[( b/4a3)( uiu; - u:u:) - (x+  c / a ) u l  u2].  

(3.41) 

(3.42) 

Eventually 

w ( 2 ’  = - [(b/4a3)(u{u;- u : u i ) - ( x +  c/a)u,u2]. (3.43) 

After having been transformed to an appropriate set of symplectic coordinates, the 
deformation equations (3.37) can be exp!citly formulated as Hamilton’s canonical 
equations derived from the Hamiltonian H‘2’. 

The symplectic 2-form d4‘” is given by 

d&(2) = -3(b/4a3)(du; A du, +dui  A du,). 

d;“’ = dp, A dq, + dp2 A dq, 

(3.44) 

Comparing with the canonical expression 

(3.45) 

of the symplectic form, a possible choice of the symplectic coordinates turns out to be 

q 2 =  ~ 2 .  (3.46) 
3b 3b 

4a  4a  P2 = ---J”)I, PI = -3 U;, 41 = U I ,  

The transformed Hamiltonian is 

$2’ = fi’ 4a3  
( P 1 , P z ;  ql, 4 2 )  = 
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and the canonical equations of motion q: = JH/Jp, pi = -JH/Jqi, i = 1,2,  become 

(3.49) 

The equations (3.48) are solved by (3.46), yielding the identities U {  = U{, us= us, 
respectively, whereas after substitution with (3.46) the equations (3.49) become 
equivalent to the deformation equations (3.37). 

4. Stokes matrices 

4.1. Stokes matrices as first integrals of the Hamiltonian structure 

Apart from ( R , , , ) ,  the first integrals of Dickey's Hamiltonian systems are no longer 
invariant with respect to the new equations of motion (= deformation equations) 

(J /  Jx)A"'+ D +[ U + 5 0 ,  A'"'] = -[D, I?,,,] = 0. (4.1) 

On the other hand, these equations yield the elements of the Stokes matrices as new 
first integrals. 

It could be that the Stokes matrices are functions of RE,, and R:,, alone, or even 
identically constant. In these cases, of c o p e ,  the Stokes matrices would not yield 
any interesting new first integrals of [D,  R m t l ] = O .  To exclude this possibility, we 
should like to know the explicit form of the Stokes matrices, in order to show that 
they are functionally independent of (R , , ,  ),,. 

4.2. Problems 

The general problem, to evaluate the set of Stokes matrices for a given differential 
equation ( J / d l )  Y = A ( l )  Y, A ( l )  rational in 5, is still unsolved. Even for special cases 
of the coefficient matrix A( l) ,  we could hardly find any results in the literature 
concerning the corresponding Stokes matrices. 

The inverse problem, however, of constructing a differential equation with given 
singularities and Stokes matrices has been discussed by Sibuya (1975b, 1977). Sibuya 
(1975a) also investigates the structure of the Stokes multipliers of a second-order 
differential equation corresponding to the Stokes matrices of first-order systems. 

4.3. Calculation of the Stokes matrices in the case m = 1 

Employing Sibuya's ideas, we succeeded in evaluating the Stokes matrices for m = 1. 
They prove to be non-trivial and functionally independent of -I?;' = = u1u2.  It can 
be strongly conjectured that this result is not restricted to m = 1, but is a general feature 
of the Stokes matrices. 

For m = 1, (3.2) becomes 

d b l - a x - c  ( b / a ) u ,  ) - y =  y .  
d5 ( ( b / a ) u 2  - b l + u x + c  (4.2) 
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The deformations (3.3) are equivalent to 

(4.3) 

To adapt our equations to the formal structure of Sibuya’s equation, we set b = 1. 
The solutions Yj’) of (4.2) and the corresponding sectors Yj’), j = 0, 1,2,3, are 

defined in the appendix. The asymptoticlexpansion of Yjl)({) for ~ + C O  in 9;’’ is 
given by the formal solution Y(“)(’)( 5) = Y(l)( 5) exp( T( ’ ) (  5)) of (4.2): 

The first-order system (4.2) can be transformed to a single second-order differential 
equation of the type 

( d 2 / d 5 2 ) y - [ 5 2 + a ~ ( ~ ) 5 +  a2(z)ly=O (4.5) 

a , ( x )  = -2(ax+c) ,  (4.6) 

discussed by Sibuya. Evaluation of the coefficients yields 

a2(x)  = (ax + c)2 + a-2uI u2 + 1 .  

Conversely, from every solution of (4.5), (4.6) one can obtain a solution of 

by putting z : =  (a /uI)[y’-(5-ax-  c ) y ] .  Thus, (4 .9 ,  (4.6) and (4.7) are equivalent. 

marised in the following statement. Sibuya treats the equation 
The results of Sibuya’s monograph (1975a) which are relevant to us can be sum- 

(d2/d12)y - (5” + al l”- ’+.  . .+ U,+-! [+ U,)Y = O  (4.8) 

and shows the following. 
(i)  The differential equation (4.8) has a unique solution 

y = y , ( 5 ;  a, ,  . . ., a p ) = y F ( [ ,  a ) ,  such that: 

(a) y,(& a )  is an entire function of ( 5 ;  a,, . . . , a+) ;  
(b) y,([, a )  admits an asymptotic representation (in the sense of Wasov (1965)): 

as 5 tends to infinity in any closed subsector of the open sector (arg 51 < 3 7 ~ / ( p  + 2 ) ,  
where 

and r+, A,,,, 
If we put 

are polynomials in ( a , , .  . . , a,). 

(4.1 1 )  
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then the quantities r, and A,,n are given, respectively, by 

r, = { 14'9 
P odd, 

-3P - b,,2+1, p even, 
and 

(ii) A change in the independent variable 5 by i=  cp E 88 yields 

(4.12) 

(4.13) 

(4.14) 

Therefore, if we choose cp such that exp[i(p+2)cp]= 1, the function y = 
y,(i; e ivu l ,  . . . , eifi'a,) is a solution of (4.14). This means, if we set 

e = exp[i2r/(p +2)1 
and 

y,,(li~l,.  . . , 4,) =y,(e-Ji;  e-'a,, . . . , e-pJa,), 

(4.15) 

(4.16) 

j E  P, the y,,(i, a )  are solutions of (4.8). In particular 

Y,,o(l, a )  =y,(l, a ) .  (4.17) 

(iii) The sector gjp) is defined by larg [ - 2 j r / ( ~  +2)1< T / ( P  +2).  If a solution of 
(4.8) tends to zero (infinity) as 5 tends to infinity along any direction in the sector 
gjp), then this solution is said to be subdominant (dominant) in the sector 97). The 
solution y,, is subdominant in gjp) and dominant in gj!; and gjy;. 

y,,(i, a ) -  e - j r p . i i " . J (  1 + ~ , , ~ , l - m / 2 )  exp[(-l)j+IE,,(l, a)l=:y,, (a) (4.18) 

(iv) The function yFJ admits an asymptotic representation 
m 

n = l  - 
as l~' tends to infinity in any closed subsector of the open sector gj!; U gjp)u gj?; where 

(4.19) 

(v) The two solutions y,J+l and Y,,+~ are linearly independent because Y,,+~ is 
subdominant in 9;:; whereas Y,,+~ is dominant here. Therefore, y,, is a linear 
combination of Y,,+~ and Set 

Remark. The quantities cj and 4 are called Stokes multipliers. As we shall see, the 
essential part of the Stokes matrices we are looking for is given by c j ( a ) .  

(vi) In the case p =2:  
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(-i) exp( -irb2), j even, 
j odd, 

(4.22) 

1 2  where b2 = +a2 - ga 
Applying the above results to our equation (4.5), (4.6), we obtain: 

6 = i ,  

r2.l = 

bl( X )  = - ( ux + c), b2(x) = ;( 1 + u - ~ u '  u 2 ) ,  (4.23) 

-1 -(2a2)-'uIu2, j even, 
(2a2)-1ulu2, j odd, 

A2.2 = -( ux + c), A2,3 = 0, A2,l = 0, 

E ,  = f['- ( a x +  c ) l .  

Following a procedure given by Sibuya, can be computed recursively. For p = 2 
we first of all get E 2 , 1 J  = 0 for all j e Z ;  therefore B2,k,1 turns out to be zero for all 
k e N ,  k odd and all j E Z .  Furthermore, 

( 1  + (2a2)- 'u1u2)(ax+ c), 

So { 1 + Xr= I B2,n ,1-"'2} is actually of the form { 1 +Er= I E2,2n ,,l-"}. 
We now argue as follows. In a formal solution ( 1  + X z l  a , l - l ) l r  e'(') of (4.5) the 

coefficients ul are uniquely determined. The formal series ( Y(m)(l))l I and ( Y(ao)(1) )12  
and ~ $ 7 )  are such formal solutions of (4.5), (4.6). Applying (iv) we obtain: 

j even, 
j odd. 

(4.24) { ( 2a2) - I  U u2( ax + c), B2,2J = 

yio), = i ( 1 / 2 a 2 ) u , u 2  p Q 2 ) u q  1 + ( 1/2a2)u1u2(ax+ c ) l - '+O( l - ' ) ]  

(4.25) 

(4.27) 

According to (i)  the solutions yZj having the formal solutions ~ $ 7 )  as asymptotic 
expansions are uniquely determined. Therefore the relations (4.27) connecting the 
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formal solutions ( Y ( ~ ) ( I ) ) ~ ~ ,  ( ~ ( “ ( l )  ) 1 2  and yk:) can be taken over to the actual solutions 
y o ,  yCl) 

Now, to specify the index 1 and to determine the precise relations of y,, and 
Y),’,),, Y;,’,: we notice that the solutions y2, are defined in the composed sectors 
tj?), U gj2)u gjt),, respectively, whereas Yi,\)l and Y:,’,; are restricted to a single sector 
9’;’). Ybt/, is dominant in SF’, while Yb’,’, in Sc’ and Y:til in 9;” are subdominant. 
Comparing with the asymptotic behaviour of y,,,, y2,n and Y , , - ~ ,  we conclude that the 
subdominant solutions Yb;/, and Y\tjl in Si2) and s \ ” ,  respectively, have to be related 
to y2,0 and y2,1. The dominant solution Yb:/, ,  however, can be linked to Y , , ~  as well 
as to J J ~ , - ~  in the sector si”. 

Since we intend to introduce the Stokes multipliers, we try to couple the solutions 
of three successive sectors and therefore relate Yb;,’, to y2,-l.  Thus we have 

1 , 1 1 9  1.12 and Y 2 J  

- 

(4.28) 

Following Birkhoff (1909), the Stokes matrices S, can be shown to be triangular, 
having the form (h  t )  or (:, y ) .  This can be concluded from the fact that a solution 
which is subdominant in .U, can be continued analytically to 91+1 and has the same 
asymptotic representation there, which is now dominant, whereas on the other hand, 
a dominant solution in a sector 9, has to pick up a subdominant component before 
it can represent a subdominant solution in the neighbouring sector 91+l. 

Making use of this result and combining it  with the preceding discussion, we can 
evaluate the Stokes matrix Sb” from Y \ ” =  Y~”Sb”. Since Yb;/, is dominant in 
Y!’( =si”) we have 

(4.29) Y!tii = ybtii + Sn( ~ ( x ) ,  X )  y b ; i 2  

and S t ’  has the form 

Sbl)=(sn 1 0  1)  
(4.30) 

From (v) we 

Inserting t-, 

know that 

~ 2 , - 1  = c - i ~ 2 , n +  ; - i ~ 2 , 1 .  (4.31) 

from (vi) and substituting with (4.28) we obtain 

y\:il = Y ~ ; I ,  + (2a/u1)c-,  e x p [ - i ~ ( 1 / 4 a 2 ) u I u , ] ~ b f ~ , .  (4.32) 

Comparing (4.31) and (4.32) and substituting ccI according to (vi), we end with 

(4.33) 
J2.n 

2a U1 [( ; 2:2 I r[-( 1/2a2)ulu,]’ 
sn( ~ ( x ) ,  x )  = -i exp -----UI u 2 )  ln 2 - (ax  + c)* 

The same result is obtained by applying the above procedure to Yi,i)l, Y$\ and a 
corresponding equation (4.5). 

The Stokes matrices S! ’ ) ,  Si ’ ’  and Si” can be evaluated in a similar way. The 
results can be summarised as follows: 

1 0  1 SI 1 0  sp= ( 1  
s3) 1)’  

sY=(o s:l’=(s2 0 1 ’  
(4.34) 
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with 

Remembering (4.3), 6 = 1, it can easily be proved that 

(a/ax)s, = 0, j = O ,  1,2,3.  

The result (4.35) can be checked by inserting it into the consistency condition of 
monodromy (A13) 

(4.36) 1 = exp(27Ti 7-p)sy 1-1 s;l)-l sy-I sb')-l. 

Appendix 

is described in detail by Jimbo et a1 (1979, 1981) and Jimbo and Miwa (1981a, b). 
We confine ourselves to a single irregular singularity at < = 00, setting ra = m + 1, i.e. 

-1  

A(<)  = A'"'(<) = - Aj<-'-', 
j = - m - 1  

Here we summarise the most important definitions and results of Jimbo et a1 (1981) 
which are relevant to us. 

(i) There exists a unique formal power series 
X 

P"'(<) = 1 + p;")<-J ('43) 
j = l  

satisfies ( d / d l )  Y(m)(m) = A'm)Y(m)(m) identically in 5. 
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(ii) ?(ml is uniquely factorised into 

X 

F'"(5) = 1 + Fjm1lwi ,  
j =  I 

The coefficients Fjm), 0:"' and T:" can be computed from A"'(5) by 

[ Fjm', A ! ! ! - l ]  

= (AL$-l+k - F:?: TLm,)_I+k), O s j s  m +  1, 
k = l  

[ F ( , " + J 7  "m,)-11 

(iii) Let 

For a sufficiently small '6 > 0, there exists a unique holomorphic and invertible solution 
Y;"' to (Al) ,  (A2) in 9jm) having the asymptotic expansion 

yjm)- y(cc)(m) in 9:"' (A91 

in the sense of Wasov (1965). 
(iv) There exists a matrix Sjm) ,  independent of 5, such that 

(A 10) 

S j m 1 , j ~ Z  are called Stokes matrices. Let y be any closed path encircling 5 = c o  and 
Y, be the analytic continuation of Y along y. Since 5 =CO is the only singularity of 
A i m ) ,  Y ( m )  is single valued, i.e. 

y;:/ = y ; m l s j m l ,  

Yy(e2*'5) = Y(5). (A1 1 )  

Y, = Y M ,  ('412) 

Therefore, in our special case the monodromy matrix M y  defined by 
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is equal to 1 and the consistency condition of monodromy reads 

(A131 1 = M ,  = exp(2.rriTim')S("'-' 2 ( m + l ) - l  * .  . s i m 1 - I  

(v) The Stokes matrices Si"' and the exponent of formal monodromy Ti"' con- 
stitute the set of monodromy data. The deformation parameters t are chosen to be 
the set { Ty%-,, . . . , T?:)}. d denotes the exterior differentiation with respect to some 
deformation parameters. 

Theorem. The monodromy data stay constant, iff there exists a matrix of 1-forms 
fl'"(() depending rationally on l such that 

d y ; m )  = (jii(m) y j m )  (A141 

where 

(A14) is equivalent to the nonlinear deformation equation 

dA'" = df"""/d{ +["'"'', A"']. 

In this article d = (d/dx) dx and each 1-form w can be represented as w = 6 dx. 

one-form 
(vi) Theorem. For every solution of the deformation equations (A14), (A16) the 

is closed, dw'"') = 0. The 7-function is introduced through w = d log 7. 

References 

Birkhoff G D 1909 Trans. Am. Math. Soc. 10 463-70 
Dickey L A 1981 Commun. Math. Phys. 82 345-60 
Jimbo M a n d  Miwa T 1981a Physica 2D 407-48 
- 1981b Physica 4D 26-46 
Jimbo M, Miwa T, Mori Y and Sat0 M 1979 RIMS preprint 305 
Jimbo M, Miwa T and Ueno K 1981 Physica 2D 306-52 
Sibuya Y 1975a Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial 

- 1975b Proc. Int. Conf: Difl Eq. ed H A Antosiewicz (New York: Academic) pp 709-38 
- 1977 Bull. Am. Math. Soc. 83 1075-7 
Wasov V 1965 Asymptotic Expansions for Ordinary Differential Equations (New York: Interscience) 

Coefficient, North-Holland Mathematics Studies vol 18 


